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1 Introduction

Over the last decade, research topics such as learning, heterogeneity, networks, diffusion, and
externalities, have moved from the fringe to the frontier in the social sciences. In large part
this new research agenda has been driven by key tools and ideas emerging from the study of
complex adaptive systems. Research is often inspired by simple models that provide a rich
domain from which to explore the world. Indeed, in complex systems, Bak’s (1996) sand
pile, Arthur’s (1994) El Farol bar, and Kauffman’s (1989) NK system have provided such
inspirations. Here we introduce another model that offers similar potential—the Standing
Ovation Problem (SOP). This model is especially appropriate given the focus of this special
issue on complex adaptive social systems. The SOP has much to offer as it (1) is easily
explained and part of everyone’s common experience; (2) simultaneously emphasizes some of
the key themes that arise in social systems, such as learning, heterogeneity, incentives, and
networks; and (3) is amenable to research efforts across a variety of fields. These features
make it an ideal platform from which to explore the power, promise, and pitfalls of complexity
modeling in the social sciences.

The basic SOP can be stated as: A brilliant economics lecture ends and the audience
begins to applaud. The applause builds and tentatively, a few audience members may or
may not decide to stand. Does a standing ovation ensue or does the enthusiasm fizzle?

Inspired by the seminal work of Schelling1 (1978), the SOP possesses sufficient structure
to generate nontrivial dynamics without imposing too many a priori modeling constraints.
Like Schelling’s work, it focuses on the macro-behavior that emerges from micro-motives,
and relies on models that emphasize agents driven by simple behavioral algorithms placed
in interesting spatial contexts.

Though ostensibly simple, the social dynamics responsible for a standing ovation are
complex. As the performance ends, each audience member must decide whether or not to
stand. Of course, if the decision to stand is simply a personal choice based on the individual’s
own assessment of the worth of the performance, the problem becomes trivial. However,
people do not stand solely based upon their own impressions of the performance. A seated
audience member surrounded by people standing might be enticed to stand, even if he hated
the performance. This behavioral mimicry could be strategic (the agents wants to send the

1Schelling’s work represents one of the first examples of a style of theorizing about social systems that
naturally arises using computational models—notwithstanding the notable absence of a computer.
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right signal to the lecturer), informational (maybe the lecture was better than he thought),
or conformal (he stands so as to not feel awkward). Regardless of the source of these peer
effects, they set the stage (so to speak) for interesting dynamic behavior.

The SOP admits a variety of modeling strategies. Over a four year period, we confronted
graduate students entering the Santa Fe Institute’s summer workshop in computational
modeling and complexity with the SOP and found the problem to be rich in possibilities and
insights. Fundamental to the success of the SOP is its ability to force modelers to confront
the core methodological issue in complex adaptive social systems, namely, how does one
model a system of thoughtful, interacting agents in time and space. Moreover, the SOP
forces modelers to take the details seriously. These details include: How do agents influence
one another? How sophisticated are agents? How does information spread among agents?
In what order do events occur? At what time scales do events occur?

Methodological perspectives can be deeply ingrained. Prior to presenting the SOP to
graduate students in economics, we tested it on Cal Tech undergraduates. Though Cal Tech
undergraduates are hardly a random sample, we did find that their modeling efforts differed
in fundamental ways from those of graduate students in economics. The undergraduates
assumed that individuals sat next to close friends (or, even went to the lecture with dates).
In contrast, very few economic graduate students included the possibility of friends in their
models. This difference might be a reflection of the social life of budding economists, but we
remind you that the comparison group here is Cal Tech undergraduates. We suspect that
the divergence in assumptions is much more due to the emphasis on individual choice that
pervades most of modern economic theory, rather than social differences between the two
groups of students.

The SOP is an apt metaphor for social situations in which agents make binary decisions
and interact spatially. It applies to a wide ranging set of phenomena such as whether to
send children to public or private school, to commit crimes (Glaeser, et al., 1996), to violate
the law (Picker, 1997), to riot (Granovetter, 1978), to search for jobs (Menczer and Tassier,
2001), to retire (Axtell and Epstein, 1999), to vote for a particular party (Mayer and Brown,
1998), to experiment with drugs, to engage in unprotected or premarital sex (Durlauf, 1997),
to pay your electric bill, or even whether to decorate your house with strands of multi-colored
bulbs during the holiday season. These various phenomena all share elements of the SOP:
people are socially influenced, they have varying degrees of sophistication, and information
flows over a network.

The SOP can be used to explore some intriguing policy questions. We often pose the
following question to our students: suppose you can place some shills in the audience, where
would you place them, and how should they act in order to maximize (or minimize) the
probability of a standing ovation? Other policy questions can also be addressed, for example,
consider the architecture of the performance hall. Does the presence of a balcony alter the
probability of an ovation? Of course, whether the Phantom of the Opera receives a standing
ovation is of little (or no) global concern, but if we interpret standing as taking drugs,
committing crimes, abstaining from dangerous sexual practices, or attending school, then
we can attach much more normative significance to our ability to prevent and create ovations.

Along with policy prescriptions, these types of models often provide other insights. For
example, suppose we lower the overall level of satisfaction with the performance while in-
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creasing its variance—intuitively, this type of change would seem to lessen the probability
of an ovation. However, in many models, the opposite occurs. On its own, this is a cute
insight, but given the tendency of social scientists to rely on means it suggests that we may
easily miss some key drivers of social systems—when social influences are present, the tail
(of the distribution) may wag the dog.

2 The Methodology of Agent-Based Models

A computational, agent-based model includes interacting agents who rely on (possibly adap-
tive) computer algorithms to determine their behavior.2 Agents can interact in both space
and time, creating dynamic patterns, and potentially perpetually novel behavior. Compu-
tational models need not be bound by the limits of analytic tractability, though the usual
modeling desiderata of elegance and parsimony still apply. The models also permit hetero-
geneity in not only agent preferences but also their behavior. The behavior of agents in
these models might be “tunable” in several dimensions, ranging from hyper-rational and
hyper-informed to simple and naive.

The computational approach to theorizing discussed here has been highly successful in
the physical sciences; Notwithstanding this success, the inherent elements of social systems
potentially combine to create a much more difficult modeling task. Models of interacting
carbon atoms can ignore some of the most perplexing issues that arise in systems of even min-
imally intelligent social beings—carbon atoms do not (as far as we know) form expectations
about their world or strategize about their behavior. Even in simple social environments
like the standing ovation, issues of expectations and strategy can quickly begin to dominate
the analysis. Of course, there is always the possibility that a limited description (which is
the essence of good modeling) might still be able to capture these key elements of social
interaction.

Note that the way we limit the descriptions of our models is closely tied to our tools.
Mathematics requires a different set of refinements of the world than computation. Whether
constructing a mathematical or a computational model, the tools at our disposal partially
determine the simplifications that we, as scientists, must impose on the world. Even the
most advanced mathematical models of social phenomena, such as those used in general
equilibrium theory, exhibit the residue of this trade off (for example, in market models the
absence of a compelling story of how prices form).

In modeling the SOP, one must explicitly account for many aspects of social interaction.
Here, we shall discuss just three: the spread of information, the timing of events, and the
behavior of the agents.

Computational models allow for a variety of assumptions about information transmission.
Information can be assumed to emanate from a single source and flow to the agents according
to a distribution as in many mathematical models. Alternatively, information can be given a
more explicit micro-structure. For example, agents can have friends and can get information
from their friends, from their friends’ friends, and so on. This enhanced micro-structure can

2Rather than give a full treatment of computational, agent-based models here, we refer interested readers
to papers by Holland and Miller (1991), Judd (1997), Tesfatsion (1997), and Page (1999).

3



lead to interesting dynamics, especially in the case of standing ovations where the agents that
can communicate their information best—those in the front row—have the worst information
about what others are doing.

Timing often plays a critical role in computational models (and, one suspects, in the world
in general). Economists have long recognized the importance of timing, for example, consider
the differences arising between the Stackelberg and the Cournot outcomes in an oligopoly
model or the strategic issues that emerge in extensive versus normal form games. Yet, much
of current modeling ignores timing issues by concentrating on equilibria and asymptotic
behavior. Such a focus does indeed make timing irrelevant—to the model—but it does not
eliminate such issues from the real world. Seemingly irrelevant timing constructions can
lead to drastically different outcomes. What happens, when, matters. Specifically, whether
agents make decisions and take actions synchronously, asynchronously, or endogenously can
lead to important differences in model behavior (Glance and Huberman, 1993; and Page,
1997). The notion of process is largely ignored (or, at the very least, assumed to be of
a particular form) in a lot of current modeling. Early computational results suggest that
process may be a much more important determinant of behavior than previously assumed.

Another area for investigation is the behavioral assumptions of our agents. In compu-
tational models, agents tend not to be fully rational. Of course, there is no a priori reason
why fully rational agents cannot be used in such models, and the fact that these models
do not use such agents is more likely a reflection of the flexibility of the tools and a desire
to investigate non-optimizing agents. If agents rely on non-rational rules, then the question
arises of how best to be human. While there may be only one way to be smart in the world,
there are many ways to be less than perfect. If each modeler implements a different way to
be less than perfect, and if each of these ways leads to a different model behavior, then the
basis for a science of adaptive agents is lost. However, strong evidence has emerged from
computational models that there may be large equivalence classes of adaptive behavior, and
thus we may indeed be able to formulate a science of adaptation. This equivalence appears
to hold in the SOP. The SOP solutions formed to date might be metaphorically thought of
as cars in a show room: they differ in their trim packages, but they all respond roughly in
the same way to similar inputs.

Operationally, we advocate including several types of agent behavior and emphasizing re-
sults that appear invariant to such choices. For example, in Kollman, Miller, and Page (1992)
we find that political parties tend to converge to the center of the platform space whether
they use random search, hill-climbing, or a genetic algorithm to locate new platforms. We
also experimented with other behavioral rules, and found that they all generated similar
convergence. Many others have commented on the need for robustness in computational
models. Holland (1988) makes the important point that we need to avoid “brittleness.”
Though at one level the notion of avoiding brittleness in models seems obvious, a lot of our
current theories in the social sciences seem more concerned with modeling unicorns than
horses.

To some extent, robustness rests in the eye of the beholder. Computational modeling
allows the researcher to easily alter the assumed behaviors and parameters in an effort to
identify the key factors driving the results. One way to search systematically the space of
alternatives, proposed by Miller (1998), is called Active Nonlinear Tests (ANTs). ANTs use
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automated, nonlinear algorithms to search over a model’s parameters and assumptions in
an effort to break the model’s conclusions. The fact that models (computational or not)
can be broken should not be a surprise—interesting models must be responsive to outside
forces. The inherent flexibility of computational modeling necessitates a careful exploration
of brittleness, and tools like ANTs facilitate such an effort.

3 Mathematical Theories

Using the standing ovation problem as a backdrop, we can comment on several distinct
mathematical research agendas that concern diffusion, information aggregation, conformity,
information cascades, and growth. We cannot overstate the importance of continually trying
to link the various insights gained from different modeling tools to each other. Advances on a
particular theoretical topic (like, understanding standing ovations) may require coordinated
efforts that involve many different tools (say, pure mathematics and computation) that can
exploit each tool’s comparative advantage and the various “insight” externalities among the
methods.

The peer effects in a standing ovation might exist for many reasons: audience mem-
bers may gain utility by matching their behavior to that of surrounding agents (Durlauf,
1995; Bell, 2002; and Bernheim, 1994), agents may interpret standing as a discrete signal
of quality and want to send the right signal themselves (Banerjee, 1992), or they may want
to collectively send the correct signal. Each of these types of peer effects has been studied
in depth mathematically. Taken as a group these models create a convincing analysis and
demonstrate the ability of mathematical theory to provide novel and powerful insights. They
also, however, leave one wanting, as what they produce does not have the “look and feel”
of standing ovations, as they do little to uncover the relevant spatio-temporal dynamics. In
short, they leave the auditorium door ajar for computational approaches.

3.1 Information Cascades

In the simplest approach to the SOP audience members can send one of two signals: stand
or sit. The inability to express intensity of preference can lead to inefficient herding, often
referred to as an information cascade. In an information cascade (Banerjee, 1992; and
Bikhchandani, et al., 1992), agents receive information sequentially and make binary choices,
for example, buy or don’t buy. Agents know both their own signal and the choices of
previous agents. The simplest models include a two-state world, GOOD or BAD, and agents
who receive one of two signals, HIGH or LOW. If an agent receives the signal HIGH the
probability that the true state of the world is HIGH equals p, where p > 0.5. Similarly, if an
agent receives the signal LOW, then the probability that the true state of the world is BAD
is p. Signals satisfy independence and agents receive them sequentially. Upon receiving her
signal, an agent must choose either GOOD or BAD. If she is correct, then she obtains a
utility of one, otherwise she gets nothing.

Rational agents do not simply follow their signals since the choices of previous agents
contain information. If an agent’s signal would lead him to buy, and he sees that the eight
agents in front of him all chose not to buy, then he may rationally conclude not to buy.
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An information cascade occurs when at some point all agents ignore their signal and simply
choose according to the actions of the previous agents. It can be shown that cascades are
inevitable (Bikhchandani, et al., 1992). If the first few agents all make the same choice the
others follow like lemmings—rational lemmings, but lemmings nonetheless.

This simple model can be generalized to allow for different mathematical structures for the
information. These generalizations yield several counterintuitive insights: public information
can be ex ante utility decreasing for some agents and the probability of an incorrect cascade
can increase if the first agent decides to become better informed.

The standing ovation problem differs from information cascade models in three respects.
First, decisions need not be made sequentially. Second, agents can change their decisions.
Thus, an agent who initially decides not to stand may opt to get on her feet on the basis of
later information. Third, agents get an initial signal of the reaction of others within their
sight lines. This, as we shall show, can prevent cascades.

Taken together, these differences imply that an information cascade should be less likely
to happen in a standing ovation than in a sequential, binary-decision herding model. Con-
sider a stylized example with six audience members. We will show how sequential updating
can lead to a cascade, and that this cascade would not occur in a standing ovation model.
Suppose that the signals (HIGH and LOW) and states of the world (GOOD and BAD) are
as before. Assume that agents 1 through 3 are in the front row, agents 4 and 5 are in the
second row, and agent 6 is in the back row.

Agent 1 Agent 2 Agent 3
Agent 4 Agent 5

Agent 6

Assume that agents in the front row can look to their left and right, and that agents in
rows two and three can see all agents in front of them, but cannot look to their left or right.
Suppose that the initial signals are as given below:

GOOD BAD GOOD
BAD BAD

BAD

To see that sequential decisions by rows would lead to a cascade, let row one update until
reaching an equilibrium. Initially, agents 1 and 3 stand, followed by agent 2. Imagine that
agents in row two have been blindfolded until the first row reaches an equilibrium. When
their blindfolds are removed, they can surmise that with equal probability either two or
three agents were standing initially; therefore, their optimal decision is to stand. Agent 6’s
decision relies upon identical logic. If all five agents are standing, then she intuits that either
two or three of the agents in the first row were standing initially. She can make no inferences
about the signals of the second row, and her optimal decision is also to stand.

In a standing ovation, agents neither make decisions or receive information in a predefined
sequence. Agents 4 and 5 have information that two of four signals were HIGH. Assume
that they randomize in this environment. One quarter of the time, they would both stand.
Even if both agents 4 and 5 stand, agent 6 will not. Her information, which in this example
is complete, is that four of the six signals were LOW. The fact that information improves
with row number stems the cascade.
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3.2 Democratic Ovations

In democracies, agents care about outcomes and not their individual votes. This concern
with outcomes prevents inefficient cascades in noiseless environments.

A number of recent papers construct models where agents receive private signals about
candidate quality. Each agent has a prior probability over which decision (GOOD or BAD)
generates higher utility, receives a signal, and updates her prior accordingly. The models
rely on either Nash or Bayesian-Nash Equilibrium as the solution concept (Austen-Smith
and Banks, 1996; and Feddersen and Pesendorfer, 1998), and generate provocative findings.
First, in equilibrium an agent may vote insincerely, that is the opposite of how she would
have voted if she were the only voter (Austen-Smith and Banks, 1996). Second, with a
large number of agents and the possibility of abstentions, elections aggregate information
effectively, nearly always obtaining the correct outcome (Feddersen and Pesendorfer, 1998).
Third, information cascades do not occur if agents only care about the outcome of the
election and not about their individual vote in a noiseless environment (Fey, forthcoming).

These models would seem to say that standing ovations occur only if they should occur,
but this conclusion must be tempered. First, even though agents are rational, they are op-
timizing only in a limited sense. Here they only make one decision at one time, and since
these decisions are a Nash Equilibrium, no one wants to change her decision. Nevertheless,
in the context of the problems they are addressing, this limitation stifles much of the inter-
esting behavior. For example, a jury makes deliberative decisions that allow for multi-period
signaling (Coughlin, 1998) similar to the SOP. Jurors may at first vote not guilty and then,
based upon the signals of others, switch and decide to vote guilty. The overlapping, inter-
acting signals cannot be captured easily by a static Nash analysis. The ability to delay the
switching of a vote to relate intensity of preference, a common feature of both juries and
standing ovations, plays an important role in information aggregation that is absent from
the previous models.

In addition to constraining signaling, these models do not include communication net-
works. Within a jury, all agents receive all signals, so the criticism doesn’t apply. However,
for elections with a large number of voters, assuming that agents’ decisions are not correlated
with those of the agents with whom they are in communication, ignores how information
spreads. Information does not emanate from a giant sun; Instead, it passes through a vast
information network consisting of newspapers, television, radio, friends, books, and public
figures. Some of these sources may resemble the audience members in the front row, as they
may have great visibility but little to say,3 while other sources may have much to say, but no
visibility.4 Regardless of the specific topology of influence, information and behavior should
be strongly correlated with respect to these connections.

Standard game theoretic models make an aggregative assumption about information and
ignore the details for the sake of tractability. The art of modeling hinges on when to focus
the microscope and when to misplace one’s spectacles. The omission of communication and
information networks, though often accepted within the social sciences, biases the investiga-
tion of social phenomena such as information aggregation. Part of the reason for ignoring

3Celebrities come to mind.
4Academics come to mind.
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communication networks has been a lack of analytical tools, though recent advances in com-
putational techniques make such investigations possible.

3.3 Pure Conformity

The standing ovation can also be interpreted as pure conformity and not as a strategic
attempt to signal. In many situations, people modify their behavior to match their neighbors,
peers, or friends (Bernheim, 1994). Evidence suggests that many other species also imitate
the behavior of their neighbors (Galef, 1976). Standing ovations might be caused by this
preference for conformity. Efficiency becomes irrelevant under pure conformity. If everyone
prefers to act identically to everyone else, then either all standing or all sitting are efficient
outcomes.

Creating a standing ovation model with preferences for pure conformity requires little
work, and, not too surprisingly, eventually either agents all stand or all sit. However, the
interesting part of these models is not the asymptotic behavior that is so well illuminated
by the mathematical models, but rather the dynamics that take us to that state. As in life,
the journey is often more interesting than the destination.

3.4 Growth and Coordination

Durlauf (1995) constructs models where agents can take one of two possible actions. These
agents reside on a giant lattice and the actions of their neighbors influence their own choices.
The distinction between these models and conformity models is subtle. In Durlauf’s models,
the actions of others determine an aggregate variable that in turn influences the costs and
benefits of the two actions. So, instead of choosing A because her neighbors chose A, an
agent chooses A because her neighbors’ actions make A less costly than B.

Using random and mean field theory, Durlauf (1995) shows that their can be up to three
equilibria, of which two can be stable. Unlike the pure conformity case, the two stable
equilibria can be Pareto ranked. Suppose we have two actions A and B, and attach greater
personal satisfaction with A (for example, A might represent staying in school, choosing not
to do drugs, or acquiring new technology, while B might denote dropping out, using drugs, or
sticking to existing technology). As in conformity models, neighbors on the lattice influence
payoffs. The two equilibria can be interpreted as good or bad neighborhoods, schools, or
growth rates. This class of models suggests that decentralized interaction need not lead to
the preferred outcome as the agents can all coordinate on the wrong action.

3.5 Diffusion Models

A standing ovation might also be modeled like the spread of a new product or technology.
Two assumptions can be made in the SOP so that it accords well with models of diffusion
(see Lave and March, 1975). First, the decision to stand must be irreversible. Second, agents
must become more likely to stand as more other agents stand. This could occur if either the
costs fall or the benefits rise as more people stand.
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Assume for the moment that people stand to conform with others. In this case, the
benefits of standing (or costs of remaining seated) increase with the number of people who
stand. Typical diffusion models assume random mixing, while here, the spatial structure is
an important determinant of the dynamics.

A main result from diffusion models is that the number of people who take the action fits
an S-shaped curve. Thus, at first only a few people take the action, but as the bandwagon
gets rolling, more and more agents join them. Eventually, almost everyone is taking the
action, and the rate of adoption falls.

4 Reactions to the SOP

We intentionally frame the SOP very loosely. When students first discuss the problem, they
typically emphasize several features that they would like their models to embody. First, in
deciding whether to stand at the end of a performance, audience members should balance
their desire to provide an honest signal of their enjoyment level of the performance against
the pressure to conform to others. Such conformity may be strategic, informational, or purely
preference based. The natural focus on agents modifying their behavior based on the actions
of their neighbors makes the interdependence of the agents quite salient to the students,
and forces them to directly confront one of the most fundamental issues in modeling social
agents.

Students also tend to be very cognizant of the underlying complexity of the SOP. This
complexity arises in information, expectations, and actions, and may make applying tra-
ditional solution concepts difficult at best. Students often struggle with employing either
rational (RATs) or rule of thumb (ROTs) agents. Under ROTs, the models need not assume
that all agents rely on the same behavioral rules. For example, some agents may care only
about the two people on either side of them, while others may try to calculate (given their
field of vision) the percentage of audience members standing. Students often endow agents
with limited and diverse information. While most students assume that people sitting in the
front get less information than people in the back, some students create models in which a
portion of the audience chooses to turn around and scan the theater before deciding what to
do. In either case, audience members obtain different information as a result of micro-level
assumptions on the informational flow. Such micro-level flows may not be well approximated
by the more typical assumptions of information emanating from a central source with an
exogenous parametric distribution.

Finally, students struggle with the appropriate level of elaboration in the model. Students
usually start from a skeletal model and over time ratchet up the level of realism. These later
models may vary the types of people sitting in the various sections of the theater (for example,
people who sit in the front might be predisposed toward enjoying the performance), rely on
continuous signals like the decibel level and length of applause, or allow people that get up
to leave or grab their coats to cancel out an emerging ovation.

SOP belongs to a rich class of problems—decentralized dynamical systems consisting of
spatially distributed agents who respond to local information. Such models force students
to contemplate the interplay between the micro-level rules of agents and the macro-level
behavior of the system. On the one hand, subtle changes in agents’ behavior can have
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unanticipated and large effects on final outcomes. On the other hand, some macro-level
events prove to be invariant to a large class of micro-level rules. Even in those cases where
the end states do not differ (for example, if everyone in the first three rows stands then
many models lead to the entire audience standing), the dynamics leading to those states
often does.

5 Some SOP Results

We now formally describe a particular approach to modeling the SOP. This description
resembles several models constructed by students. Agents are seated in a rectangular au-
ditorium with R rows and C seats per row. At the conclusion of a performance, whether
academic, musical, or comical (or all three), each agent makes an evaluation of the perfor-
mance’s quality. Let qij ∈ Qij = [0, 1] represent the quality signal received by the audience
member seated in the ith row and jth seat. Higher values of qij represent greater perceived
quality. For the moment, values may be thought of as either private or common with id-
iosyncratic noise, or some convex combination of the two. Each audience member possesses
an exogenous threshold level in addition to his or her quality evaluation. The threshold level
for the agent in the ith row and jth seat, Tij, equals the minimal quality required for that
agent to stand immediately. Thus, if an audience member’s private value weakly exceeds the
threshold, that is if qij ≥ Tij, she stands immediately. If not, she remains seated.

Let st
ij ∈ {0, 1} denote whether or not the audience member is standing (st

ij = 1) or
sitting (st

ij = 0) t time periods after the completion of the performance, and let S t be the
total number of audience members standing at time t. Therefore,

S0 =
C∑

j=1

R∑

i=1

s0

ij

equals the number of agents standing immediately. In interesting cases, only a fraction
(0 < S0 < R · C) of the audience stands immediately. With a portion of the audience
standing, those who remain seated must decide whether to stand, and those audience mem-
bers standing must decide whether to remain standing or to sit. Both decisions rely on local
information—possibly the number of neighbors standing or the percentage of audience mem-
bers within sight who are standing—as well as the initial quality appraisal of the individual.
For example, someone seated surrounded entirely by people who are standing most likely will
stand, unless she abhorred the performance. Similarly, unless she felt that the performance
was stupendous, an isolated standing person may decide to sit if her neighbors do not join
the standing ovation quickly.

The behavior of an audience member at a particular point in time can be represented
by a heuristic that maps her information and quality appraisal into an action, either sit or
stand. Periods are considered as discrete units. The continuous time case shall be addressed
later in the discussion of random asynchronous and endogenous asynchronous updating. Let
Kij be the seat assignments visible to the audience member in the ith row and jth seat.
Define a behavioral rule at time t > 0 by F t : Kt × Qij → {0, 1} for t ≥ 1. Recall that in
period 0, the decision to stand depends only on the agent’s threshold and qij.
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As formulated, the behavioral rules may depend on the time period. An audience member
may require fewer neighbors to stand initially than in later periods in order to be induced
to stand herself. Suppose, for example, that audience members can observe the actions of
everyone seated in the row in front of them but are incapable of observing any other agents.
Suppose that everyone in the front row stands immediately and that no other members of
the audience do so. Consider two scenarios. In the first, the behavioral rule of each agent is
to stand only if all visible agents are standing. It follows that in the first period, the second
row stands, in the second period the third row stands, and so on until the R−1 period when
the entire audience is standing. In the second scenario, suppose that an audience member
stands only if all visible agents are standing prior to the end of the third period. With
this rule, the first through fourth rows will stand, but then the standing will cease. These
scenarios demonstrate the interplay between the micro-level rules of the audience members
and the resulting macro-level phenomena which forms the core of this inquiry.

In the previous example, people in the front rows have more signaling power than people
in the rear. While people in the front can be seen by nearly everyone, people in the rear
cannot. If the entire front row of audience members were to stand at the conclusion of a
performance, they make their preferences known to everyone in the audience. In contrast, if
the people in the back row were to stand, their preferences might only be known to people
in the one or two rows adjacent to theirs. The large influence of the front rows becomes
especially important when considering the seeding of standing ovations.

6 A Computational Model of Standing Ovations

We now construct a computational model that approximates the formal model described in
the previous section. Each audience member uses a majority rule heuristic—if a majority of
the people that she sees are standing, she stands, if not she sits. Previously, we discussed
a variety of issues that we can address within the SOP. Here we consider two of them: the
timing of updating and the information structure.

Computational modeling allows great flexibility in the implementation of timing and
process. To demonstrate how timing can be implemented and, more importantly, how it
can make a difference to the predictions, we consider three possible procedures for updating:
synchronous, asynchronous-random, and asynchronous-incentive-based. Under synchronous
updating all agents update simultaneously, under asynchronous-random agents update one
at a time based on a random order (capturing the spirit of continuous time updating), and
under asynchronous-incentive-based the order is not random but depends upon incentives
(Page 1997). For this latter case, we assume that those agents surrounded by agents taking
the opposite action are the first to update.

Synchronous Updating: At the start of each discrete time period, all agents update in
unison.
Asynchronous-Random Updating: Within each discrete time period, the agents are
permuted into a random order and updated in that order.
Asynchronous-Incentive-Based Updating: Within each discrete time period, the agents
update one at a time based on an explicit ordering rule that has agents who are least like the
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people that surround them move first.
The second issue concerns the information structure imposed by the neighborhoods.

At one extreme, audience members might see the behavior of the entire audience. This
corresponds to the assumption of global information. At the other extreme, a person may
observe only a limited neighborhood, say, the three people immediately ahead and the two
on either side. We shall consider two neighborhood structures. In each diagram below, X

denotes the agent and F denotes a visible neighbor.

Five Neighbors: Agents look at the two neighbors on either side and the three agents
directly ahead of their current location.

F F F

F X F

Cones: Agents look at the two neighbors on either side of them, the three agents in the row
directly ahead, the five agents two rows ahead, and so on.

F F F F F F F

F F F F F

F F F

F X F

The model proceeds as follows. We assume a square auditorium with 400 seats total.
Initially, audience members make their decisions based solely on perceived quality. We let
each audience member’s initial quality assessment lie in the interval [0, 1]. Each individual
has an identical standing threshold of 0.5, and thus she will stand initially if and only
if her perceived quality exceeds 0.5. After the initial ovation, each agent decides what
to do entirely on the basis of what other audience members are doing. An agent stands
if and only if a majority of her neighbors are standing.5 Admittedly, this is an extreme
transition in behavior between the initial and subsequent periods—it is likely that someone
who stands initially, won’t immediately sit if barely less than a majority of her neighbors are
standing. Nevertheless, this assumption is sufficient to generate some interesting results, and
the symmetry induced by the use of identical rules for sitting and standing greatly simplifies
the analysis.

We introduce three measures to compare outcomes under the different scenarios. Number
of Iterations (NI) denotes the number of periods until a steady state is achieved. For incen-
tive based updating, we let one period equal 400 agent decisions. Stick in the Muds (SM)
equals the percentage of people that do the opposite of the majority in the steady state and
Informational Efficiency (IE) equals the percentage of the time that the majority of agents
in the steady state takes the same action as the majority did initially. The higher IE and
lower SM, the better the information aggregation.

In the five neighbor scenario we find:

5In the case of a tie, we assume that she sits or stands with equal probability.
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Five Neighbors
Number of Iterations Stick in the Muds Informational Efficiency

Async-Random 10.3 (0.62) 34.9 (1.01) 72.0 (4.51)
Sync 20.2 (1.45) 25.0 (1.91) 57.0 (4.98)
Async-Incentive 2.3 (0.05) 27.5 (1.57) 53.0 (5.02)

Notice that Asynchronous-Random updating leads to a higher IE and more SM than
either of the the other two updating rules. This suggests a tradeoff between the two measures,
namely that aggregating information efficiently requires some SM activity. However, this is
not universally true as Synchronous dominates Asynchronous-Incentive-Based updating on
both counts. It is disappointing that Asynchronous-Incentive-Based updating, probably the
most realistic timing assumption, performs worst on both measures. One good thing about
Asynchronous-Incentive-Based updating is that it converges quickly. This is likely the result
of growing regions of SM. By comparison Synchronous updating takes a very long time to
settle down into a steady state. This is because members of the crowd can stand and sit
many times while trying to coordinate.

Under cone neighborhoods we observe:

Cones

Number of Iterations Stick in the Muds Informational Efficiency
Async—Random 8.0 (0.92) 22.9 (0.94) 60.0 (4.92)
Sync 18.8 (1.12) 13.6 (1.61) 51.0 (5.02)
Async—Incentive 2.0 (0.00) 16.8 (1.45) 51.0 (5.02)

We find similar patterns to those seen under the five-neighbor scenario. Note, however,
that even though the agents see more agents with cone neighborhoods, and thus they should
have better information, the IE is lower. This occurs because the agents in the front have
enormous influence. Almost everyone cues off of the behavior of the front row agents, and we
find a phenomenon that is similar to an information cascade. Note as well that the number
of SM drops considerably.

If we compare these computational findings with the mathematical literature, we see
many of the same features: (1) the system often converges to the “wrong” equilibrium, that
is, most people can be standing even though most did not like the play; (2) greater pressures
to conform—as captured by the cones—leads to a less efficient aggregation of information;
(3) a plot of the number of people standing over time tends to be roughly S-shaped as
predicted by diffusion models; and (4) people in the front can have a large impact.

That said, the mathematical results that we described tend to suggest rather stark out-
comes. The mathematical models (with some added noise) imply that all agents eventually
take the same action. This rarely happens in the computations (as shown by SM). Also,
with the exception of the cascade models, the mathematical models typically ignore the
sequencing of updating. Yet, we see from the computational models the importance of up-
dating choices. The mathematical models also obscure many of the interesting dynamics.
Though we do see something that is roughly like an S-shaped curve, it is relatively easy to
upset this finding so that the ovation is a more gradual affair. Moreover, even if we accept
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the S-shaped curve, it only characterizes the number of people standing, not their spatial
locations. In sum, the mathematical insights do not reveal the full story, but certainly help
us frame and understand the results emerging from the computational model. Similarly, the
computational insights can now begin to inspire new directions in the mathematics.

7 Conclusions

The SOP offers a platform for considering worlds with social learning, diffusion, networks,
and heterogeneity. It is also a platform for exploring important methodological issues related
to computational modeling. We have found that our students find modeling the SOP both a
fun and inspiring enterprise—one that is different enough from the usual problems they face
to shake them from paradigmatic complacency, yet grounded enough to key social concerns
to avoid apathy. By simultaneously being normatively benign yet closely related to many
important social issues of the day (the effectiveness of democracies, the spread of crime,
divergences in growth, and financial inefficiencies), the SOP pleases both the puzzle solvers
and those concerned with the “real world.”

The SOP can be extended in many directions. As was discussed, one can add balconies,
introduce variables that allow for continuous signaling, or even include people leaving the
auditorium. Many of these variations have real-world analogs. In a recent workshop, we
put a new spin on the SOP. We encouraged our students to consider the entrance dynamics
that determine the initial seating decisions of agents. In such a world, local groups begin to
suddenly play a big role. Ultimately, the two problems can be linked. The entrance dynamics
may imply a very different pattern of seating than our usual assumptions may imply: people
predisposed to like the presentation may sit up front, groups with similar tastes may cluster,
and so on. Such initialization patterns may have a big impact on the ultimate dynamics
of the ovation, and on the complexity of the agent’s strategies and information processing.
Exactly what will happen, we cannot say at this point. We will have to wait until the
performance ends.
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